hystero-differential equation - significado y definición. Qué es hystero-differential equation
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es hystero-differential equation - definición

Oscillating differential equation; Oscillation (differential equation)

Differential equation         
MATHEMATICAL EQUATION INVOLVING DERIVATIVES OF AN UNKNOWN FUNCTION
Examples of differential equations; Differential equations/Examples; Differential equations of mathematical physics; Differential equations from Mathematical Physics; Differential equations from outside physics; Differental equations; Diff eq; Differential Equations; DiffyEq; Diffyeq; Separable ordinary differential equation; Exact first-order ordinary differential equation; Order (differential equation); Diff eq'n; Diffeq; Second order equation; Differential equations; Second-order differential equation; Higher order differential equation; Degree of a differential equation; Solutions of differential equations; Types of differential equations; Applications of differential equations; Differential Equation; History of differential equations; Differential equation solvers; Order of differential equation
In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, and the differential equation defines a relationship between the two.
Degree of a differential equation         
MATHEMATICAL EQUATION INVOLVING DERIVATIVES OF AN UNKNOWN FUNCTION
Examples of differential equations; Differential equations/Examples; Differential equations of mathematical physics; Differential equations from Mathematical Physics; Differential equations from outside physics; Differental equations; Diff eq; Differential Equations; DiffyEq; Diffyeq; Separable ordinary differential equation; Exact first-order ordinary differential equation; Order (differential equation); Diff eq'n; Diffeq; Second order equation; Differential equations; Second-order differential equation; Higher order differential equation; Degree of a differential equation; Solutions of differential equations; Types of differential equations; Applications of differential equations; Differential Equation; History of differential equations; Differential equation solvers; Order of differential equation
In mathematics, the degree of a differential equation is the power of its highest derivative, after the equation has been made rational and integral in all of its derivatives.Order and Degree General Terms of Ordinary Differential Equations.
Examples of differential equations         
MATHEMATICAL EQUATION INVOLVING DERIVATIVES OF AN UNKNOWN FUNCTION
Examples of differential equations; Differential equations/Examples; Differential equations of mathematical physics; Differential equations from Mathematical Physics; Differential equations from outside physics; Differental equations; Diff eq; Differential Equations; DiffyEq; Diffyeq; Separable ordinary differential equation; Exact first-order ordinary differential equation; Order (differential equation); Diff eq'n; Diffeq; Second order equation; Differential equations; Second-order differential equation; Higher order differential equation; Degree of a differential equation; Solutions of differential equations; Types of differential equations; Applications of differential equations; Differential Equation; History of differential equations; Differential equation solvers; Order of differential equation
Differential equations arise in many problems in physics, engineering, and other sciences. The following examples show how to solve differential equations in a few simple cases when an exact solution exists.

Wikipedia

Oscillation theory

In mathematics, in the field of ordinary differential equations, a nontrivial solution to an ordinary differential equation

F ( x , y , y ,   ,   y ( n 1 ) ) = y ( n ) x [ 0 , + ) {\displaystyle F(x,y,y',\ \dots ,\ y^{(n-1)})=y^{(n)}\quad x\in [0,+\infty )}

is called oscillating if it has an infinite number of roots; otherwise it is called non-oscillating. The differential equation is called oscillating if it has an oscillating solution. The number of roots carries also information on the spectrum of associated boundary value problems.